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Abstract—Large language models trained on massive code
corpora can generalize to new tasks without the need for task-
specific fine-tuning. In few-shot learning, these models take as
input a prompt, composed of natural language instructions, a
few instances of task demonstration, and a query and generate
an output. However, the creation of an effective prompt for code-
related tasks in few-shot learning has received little attention.
We present a technique for prompt creation that automatically
retrieves code demonstrations similar to the developer task, based
on embedding or frequency analysis. We apply our approach,
CEDAR, to two different programming languages, statically and
dynamically typed, and two different tasks, namely, test assertion
generation and program repair. For each task, we compare
CEDAR with state-of-the-art task-specific and fine-tuned models.
The empirical results show that, with only a few relevant code
demonstrations, our prompt creation technique is effective in
both tasks with an accuracy of 76% and 52% for exact matches in
test assertion generation and program repair tasks, respectively.
For assertion generation, CEDAR outperforms existing task-
specific and fine-tuned models by 333% and 11%, respectively.
For program repair, CEDAR yields 189% better accuracy than
task-specific models and is competitive with recent fine-tuned
models. These findings have practical implications for practi-
tioners, as CEDAR could potentially be applied to multilingual
and multitask settings without task or language-specific training
with minimal examples and effort.

Index Terms—Large Language Models, Transformers, Few-
shot learning, Program repair, Test assertion generation

I. INTRODUCTION

Learning-based techniques have been applied to a wide
array of source-code related tasks such as program repair [1]–
[7] and assertion generation [8]–[10]. While task-specific ML
models can replace hard-coded rules and heuristics, building
large datasets of examples [11] and (re-)training the model
involves significant effort and does not generalize beyond the
given code processing task or programming language.

Very large neural networks, such as BERT [12] and
T5 [13] trained for language understanding and generation
have achieved great results for various tasks in recent years.
However, they still require a significant number of task-specific
training examples to fine-tune the model and can generally
support a handful of programming languages. In addition,
some of the model parameters must be updated to fit the task,
adding more complexity to the model fine-tuning.

More recently, large language models such as GPT-3 [14],
trained on large corpora of data at a very large scale, have been

shown to generalize to new tasks without task-specific fine-
tuning. These models take textual input, which is composed
of natural language instruction, (optionally) a handful of
examples of task demonstration, and a query that is defined
as the prompt. This notion of learning from the desired task
description, along with a few examples, is called prompt-based
few-shot learning [15]. By employing prompts, these large
language models are shown to be effective in different tasks
that the model is not explicitly trained on, without the need
for large-scale task-specific data collection or model parameter
updating.

A number of large pre-trained language models for code
generation [16]–[18] have been proposed, which primarily
focus on prompts to generate code from natural language
descriptions. Large language models such as CODEX are
employed by GITHUB COPILOT 1 for code completion tasks.
Recent studies assess how the adoption of code completion
with large language models could be helpful to developer
productivity [19]–[21], or solving coding interview problems
and competitive programming [22]–[24], or how to employ
feedback from external sources such as generated tests to
improve the quality of generated code [25], [26]. There are
also efforts to employ large language models to patch simple
bugs [27], [28].

In this paper, we focus on the application of prompt-based
few-shot learning on code-related tasks with the following
questions to address: (a) Can few-shot learning be applied and
generalized to specific code-related tasks? (b) How does few-
shot learning compare to task-specific or fine-tuned models?
(c) What are the ingredients of an effective prompt for code-
related tasks? and (d) How to choose effective examples as
demonstrations for code-related tasks?

We investigate how to build effective few-shot learning
prompts for different code-processing tasks. We propose a
novel technique for selecting a few demonstrations from
a large pool of code examples by applying retrieval-based
techniques based on embedding or frequency analysis. We
implemented our approach in a framework called CEDAR
(Code Example Demonstration Automated Retrieval). We
apply CEDAR on two different tasks, namely test assertion
generation and program repair. We present an evaluation in

1https://copilot.github.com
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which we use CODEX to instantiate few-shot learning with
various numbers (e.g., zero-shot, one-shot, or n-shot) and
forms (e.g., random vs systematic, or with vs without natural
language descriptions) of code-related prompts. Our results
show that with just a few examples, chosen systematically
with our retrieval-based technique, a large language model
employed for few-shot learning achieves significant results
with an accuracy of 76% and 52% for test assertion generation
and program repair tasks, respectively. We also compare our
results against state-of-the-art learning-based models and see
significant improvements with task-specific and fine-tuned
models.

In this paper, we make the following contributions:

• A systematic approach of prompt-based few-shot learning
for two code-related tasks, namely test assertion genera-
tion and program repair.

• First work to propose code-related prompts and retrieval-
based methods (based on embedding and frequency) for
demonstration selection in few-shot learning, to the best
of our knowledge.

• Our framework CEDAR [29], which is available.
• An evaluation of the efficacy of our prompt-based demon-

stration retrieval approach in comparison with state-of-
the-art techniques. For the program repair task, by adopt-
ing the retrieval-based technique, CEDAR outperforms
the state-of-the-art task-specific model by a significant
margin of 188.94% and the fine-tuned model by 4.91%.
For assertion generation, retrieval-based demonstration
selection outperforms task-specific and fine-tuned models
by 333.47% and 11.05%, respectively.

This work has implications for practitioners and tool de-
signers. Our results show that by combining retrieval-based
techniques for prompt selection, CEDAR can potentially be
applied to a wide range of tasks and programming languages
for practical tool building without the need for large-scale task-
specific data collection, model training, or fine-tuning.

II. APPROACH

Our goal is to devise an effective prompt that could help
large language models with different code-related tasks. We
first define the notion of a prompt for code generation tasks.
Then we present our prompt construction technique, called
CEDAR, which employs different techniques for code demon-
stration selection.

A. Problem Definition: Prompt Creation

In few-shot learning, a prompt needs to be provided for a
given code-related processing task. We define a prompt, P
= { xtest + CD + NL } where xtest is a developer query
to be inferred, CD is a set of code demonstrations CD =
{(xi, yi)}ni=1 of input code sequence (xi) and desired output
sequence (yi), and NL is a natural language template; also
size(P) ≤ context-window, i.e., the prompt fits within the

context window limit of the language model.2 We call the
instantiation of code demonstration examples, E together with
the natural language query, the ingredients of a prompt.

Now for a new developer query xtest, the challenge is
to devise a code retrieval technique CR (xtest, CD), such
that it will select a subset of code demonstration examples
E = {(xj , yj)}mj=1 ⊂ CD, where m ≤ n such that the
chosen examples are similar to the task in xtest and fit within
the context window limit of the language model. Given a
large language model LLM, during inference, a well-created
prompt, P should lead to the desired target output sequence
with high accuracy and not incur significant overload in terms
of processing time or resource usage so that the retrieval
technique can be adopted in real-time.

B. Demonstration Retrieval

Figure 1 depicts our overall approach. At a high level, the
input to CEDAR is a set of code demonstrations, and the output
is a text-based prompt (P) that is composed of task description
with or without natural language instructions, and instances
of selected code demonstrations. Next, we describe the major
components of CEDAR.

The first step is to build a prompt to elicit an intended
response from the language model. The developer’s intention
could be described in the form of natural language text with or
without including instances of code demonstrations. While nat-
ural language could provide the LLM with a cue, adding code
demonstrations could help the model interpret the intended
response that the developer expects unambiguously. To achieve
this demonstration builder has two components, namely (1)
the demonstration retriever, and (2) the template selector. For
an unseen test example, xtest , demonstration retriever extracts
similar code usage examples from the demonstration pool. A
few well-written demonstration instances showing what the
task entails can help the LLM to understand the expected
behavior.

Our approach to selecting examples involves finding demon-
strations that are similar to the task specified in the devel-
oper query. To that end, we employ information retrieval
techniques [30] to obtain top-K relevant demonstrations from
the pool demonstrations that match with the given query. In
Figure 1, we use an accurately predicted sample from each task
as our running example. Here, the incomplete code represents
a real sample query from the test set for each task, and the
retrieved similar code represents a single matched CD based
on the query, xtest. We employ a sparse retrieval model [31] to
perform lexical matching and compute relevance scores and
rank code demonstrations (CD) based on the query (xtest).
Additionally, we explore dense retrieval techniques using sen-
tence transformers [32] to retrieve relevant documents based
on embedding vectors. Next, we describe our retrieval-based
demonstration selection step.

2Language models limit the amount of contextual information that could
be fed it to the model; the context window for CODEX is limited to 8,000
tokens.
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  return date.getFullYear();
  break;
case ‘month’:
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  "<AssertPlaceHolder>";
}
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  return 'local';
case 'mapbox:':

org.junit.Assert.assertNotNull
(logManager)

Fixed code (program repair)

New Assertion (assertion generation)

+

Fig. 1: Overview of our approach CEDAR.

Retrieval-based Demonstration Selection. In this step, we
use a neural search and a frequency-based retrieval technique
to select demonstrations based on similarity with the query.
Therefore, the number of CDs for each query, xtest may vary
based on the number of similar demonstrations found for the
query. However, since there is a context window limit in
CODEX for a given prompt, we select the maximum number of
similar demonstrations that can fit within the limit (including
the query).

• Embedding (SROBERTA): For embedding-based search,
we use the sentence transformer model [32] to encode
code snippets as vectors. Specifically, we employ the
pre-trained st-codesearch-distilroberta-base3

model that was trained on the CodeSearchNet
dataset [33]. In the assertion generation task, for a
given query, the test method snippet is fed into the
sentence transformer model to generate the embedding
vector. Then cosine similarity metric is used to retrieve
top-N test code snippets closest in the vector space to
this query, from the set of code demonstrations, CD.
For program repair, given a query (xtest) for an error
category, CEDAR performs a similarity search based on
the buggy code snippet from the code demonstrations
for that specific error category.

• Frequency (BM-25): We use the sparse retrieval method
BM-25 [31] which is an extension of TF-IDF [34], to
find demonstrations for each test sample with the most
similar relevance score. In assertion generation, BM-25
ranks CDs based on the test code snippet similarity for a

3https://huggingface.co/flax-sentence-embeddings/
st-codesearch-distilroberta-base

given query, xtest. On the other hand, for program repair
BM-25 ranks buggy code snippets from CDs within that
bug type.

Template Selection. A prompt can be composed with and
without natural language instructions. The inclusion of natural
language instructions in the prompt can provide the model
with additional information about the developer’s intent, but
it also increases the risk of prompt engineering, due to the
inherently experimental nature of using natural language [35],
[36]. In the template selection step, we build prompts with and
without natural language instructions for the best-performing
strategy in each task to assess the effect of natural language
instructions.

C. Prompt Builder and Model Invocation Layer

For a given code-related task, in this step, we build a prompt
by composing (a) code demonstrations, CD (b) developer
query, xtest and (c) natural language instructions. To select
demonstrations, we take examples from the demonstration
retriever component. Then we select a task-specific template
and combine these three elements to build the final prompt.

For few-shot learning, we can employ different LLMs. In
this work, CEDAR employs CODEX, a LLM based on GPT-
3. It is trained on a massive code corpus containing exam-
ples from many programming languages such as JavaScript,
Python, C/C++, and Java. CODEX is released by OpenAI4 and
powers GITHUB COPILOT– an AI pair programmer that gener-
ates whole code snippets, given a natural language description
as a prompt. Similar to GPT-3, CODEX is trained to predict the
next token as an autocomplete task, given the past tokens as

4https://openai.com

https://huggingface.co/flax-sentence-embeddings/st-codesearch-distilroberta-base
https://huggingface.co/flax-sentence-embeddings/st-codesearch-distilroberta-base
https://openai.com


### METHOD_UNDER_TEST:
getProduction(java.lang.String) {
  return productionsByName.get(name);
}

### UNIT_TEST
testJustifications() {
  runTest("testJustifications", 2);
  org.jsoar.kernel.Production j = agent.getProductions()
                            .getProduction("justification-1");
  "<AssertPlaceHolder>";
}

[METHOD_UNDER_TEST]: getProduction
[UNIT_TEST]: testJustifications

### generate assertion
org.junit.Assert.assertNull(j)
END_OF_DEMO

Demonstration 1

Demonstration 2

Demonstration N

…

### METHOD_UNDER_TEST:
getLogManager() {
  return logManager;
}

### UNIT_TEST
testLogManagerCreation() {
  org.jsoar.kernel.LogManager logManager = 
            agent.getLogManager();
  "<AssertPlaceHolder>";
}

[METHOD_UNDER_TEST]: getLogManager
[UNIT_TEST]: testLogManagerCreation

### generate assertion Instruction
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Fig. 2: Assertion Generation Prompt Template.

context over a large code corpus. We have chosen CODEX as
it is a popular LLM on source code and has been studied in
the literature [21], [27], [28], [37], [38]. We invoke the model
with the constructed prompt using CODEX API.

Once the model generates a code suggestion, CEDAR san-
itizes the output and performs an evaluation. Different tasks
require different evaluation metrics, and there might be a need
for more task-specific evaluation metrics for the automated
evaluation of a given task. CEDAR provides generic evaluation
metrics such as accuracy, edit distance, LCS, and latency as
described in Section III-B. The final output from CEDAR is a
sanitized model suggestion and evaluation results.

D. Prompt Templates for Code-Related Tasks

Prompt Design for Assertion Generation. Figure 2 illustrates
a prompt template for assertion generation. The input prompt
contains two sections – code demonstrations, CD and the

### Fix ESLint error in the following JavaScript code:
### Buggy JavaScript
  return date.getFullYear();
  break;
case 'month':

"rule_id" : no-unreachable
"evidence": Unreachable code.
"warning_line": break
   
### Fixed JavaScript
  return date.getFullYear();
case 'month':

END_OF_DEMO Demonstration 1

Demonstration 2

Demonstration N

…

### Fix ESLint error in the following JavaScript code:
### Buggy JavaScript
  return 'local';
  break;
case 'mapbox:':

"rule_id" : no-unreachable
"evidence": Unreachable code.
"warning_line": break;
   
### Fixed JavaScript

Instruction

C
o

n
te

x
t

  return 'local';
case 'mapbox:':

Input

Error Snippet

Error Context

Output

Query

Code Demonstrations

Fig. 3: Program Repair Prompt Template.

query, xtest. The natural language instructions are denoted by
the blue text in the template. Each demonstration is separated
with a delimiter END_OF_DEMO. For assertion generation, each
demonstration consists of the focal method, the test method
containing an <AssertPlaceholder>, and the expected as-
sertion. The query contains the context of a unit test (focal
method and test method) followed by the instruction. This
is essentially an autocomplete task where the query is an
incomplete example used to prompt the model. Finally, the
expected output for a given prompt is a single line of assertion.
Prompt Design for Program Repair. Figure 3 illustrates the
running example for program repair in a prompt template.
Similar to the previous template, the input prompt contains the
same two sections (CD and xtest); the blue text indicates natural
language instructions in the template and each demonstration
is separated with END_OF_DEMO as a delimiter. For program
repair, each demonstration consists of the error code snippet,
error context (i.e., ESLint rule name, error message/evidence,
warning line snippet), and the fixed code snippet. The query
contains the natural language instruction, followed by the
context of the buggy code snippet. As it is an autocomplete
task, the comment Fixed JavaScript is used to signal
the model to generate a correct code snippet. Finally, the



expected output for a given prompt is a multi-line code snippet
addressing the bug.

III. EVALUATION

To assess the effectiveness of CEDAR we address the
following research questions:

• RQ1: How effective is retrieval-based prompt creation?
• RQ2: How does CEDAR’s accuracy compare to state-of-

the-art models?

For running our experiments, we use CODEX model
code-davinci-002. We set the temperature as 0 to get a
well-defined answer from CODEX. We run all the experiments
on an Intel(R) Xeon(R) CPU 2.50GHz machine with 62
GB RAM. The running OS platform was RHEL 8. For the
implementation of BM-25 we have used gensim5. which is a
widely used package for similarity retrieval with large corpora.
For the vector search, we employ vdblite6 which is a database
for vector similarity search. In the following subsections, we
outline the results of the experiments that we designed to
answer each of the research questions.

A. Datasets

We compare CEDAR with ATLAS [8] for assertion genera-
tion and TFIX [39] for program repair. To compare with these
task-specific models, we select code demonstrations, CD, from
the corresponding training datasets. A task-specific model such
as TFIX [39] and ATLAS [8] need a large training dataset.
In contrast, for CEDAR the goal is to select a few instances of
demonstrations from the TFIX and ATLAS training dataset.
In this work, to retrieve demonstrations, we use the training
dataset from respective tasks as the demonstration pool, but
conceptually, this demonstration pool can be created from any
project(s) containing a similar format of contextual informa-
tion and query for a given task.
ATLAS Dataset. We use the dataset from ATLAS [8] to
verify the ability of CEDAR in generating assert statements
for Java code. Each data point contains a focal method and a
test method as context for generating a single assertion for the
given test method, known as Test-Assert Pairs (TAPs). These
test methods only use the JUnit test framework, which is a
popular unit testing framework in Java. ATLAS [8] contains
both abstracted, AGabs and raw source code, AGraw; for
our evaluation, we only use the raw source code. The dataset
contains eight categories of assertions; assertEquals,

assertTrue, assertNotNull, assertThat,

assertNull, assertFalse, assertArrayEquals,

assertSame. The TAPs from the training set are used as the
pool for extracting demonstrations, and all the TAPs in the
testing set are used for the evaluation. The total number of
samples in AGraw is 188,154, out of which 18,815 instances
are used for the evaluation of our approach. The training
set size for this dataset is 150,523, which is used as the
demonstration pool for selecting CDs.

5https://github.com/RaRe-Technologies/gensim
6https://pypi.org/project/vdblite

TFIX Dataset. We use the dataset from TFIX [39] to evaluate
the ability of CEDAR to repair JavaScript code. This dataset
contains static linting errors collected from the top 500k
GitHub public repositories based on the number of stars and
consists of 52 error types from ESLint7. Each data point
contains a buggy code snippet (usually 2-4 lines), and an
error context from ESLint that provides information about
the error type, message, and warning line. In their paper, the
authors of TFIX [39] use two types of datasets to evaluate
their model, namely clean test and random test. We use clean
test dataset for querying our model as it has been used for
comparison with other models in [39], unlike random test.
Similar to the ATLAS dataset, we use the training set for
extracting demonstrations. The total number of samples in this
dataset is 104,804. Following the same split from TFIX, we
choose 10% of the samples as xtest during inference. From the
remaining sample size, 90% is selected for fine-tuning and
10% for validation in TFIX. We use the samples that were
used for fine-tuning to choose the CDs.

B. Evaluation metrics

Accuracy exact match (%). This metric is used to determine
the percentage of samples where the inferred output matches
lexically with the expected output.

Accuracy plausible match (%). We use this metric to deter-
mine the percentage of samples where the predicted output is
similar to the expected output.

LCS (%). Longest Common Subsequence (LCS) is the ratio of
the longest common subsequence between the predicted output
and the expected output. We calculate this as a percentage.
This metric has been used in sentence ordering of NLP
tasks [40].

Edit distance (ED.). This metric determines the number
of edit operations required for the inferred output to match
the expected output. These edit operations can be addition,
deletion or modification. The lower the edit distance, the closer
the predicted output is to the actual output. This metric has
been used in learning-based code-related work as a proxy to
measure developer effort [41], [42].

Assertion method matched (AMM) %. This metric is only
used for the assertion generation task, where we calculate
the percentage of match between the expected assertion type-
/method and predicted assertion type/method. This metric has
been employed in previous work [8].

Inference time. This is the amount of time in seconds to
predict the output, given a prompt.

C. Baselines

We compare CEDAR to several baseline approaches that
select random code snippets in the demonstration retriever.
In the random strategy, we choose random examples from the
demonstration pool.

7https://eslint.org

https://github.com/RaRe-Technologies/gensim
https://pypi.org/project/vdblite
https://eslint.org


TABLE I: Results for demonstration selection strategy in code-related tasks.

Task Strategy Types Examples EM Acc.(%) PM Acc.(%) LCS(%) ED. AMM.(%) Inf. time(s)

Assertion
Generation

Random

Zero-shot 0 0.00 14.42 15.34 36.62 29.16 1.33
One-shot 1 44.41 47.64 64.97 57.83 70.24 3.64
8-shot/category 8 50.33 53.69 62.65 17.94 74.48 2.54
8-shot 8 50.57 53.34 68.77 19.10 74.12 2.41
20-shot 20 49.99 52.73 74.64 20.53 73.80 3.16

CEDAR
Embedding 7 75.79 77.40 88.50 11.35 88.49 1.78
Frequency 6 76.55 78.32 88.99 13.18 89.31 2.20

Program
Repair

Random

Zero-shot 0 27.33 32.57 68.02 98.30 - 3.35
One-shot 1 28.54 37.57 67.93 87.13 - 3.95
52-shot/category 52 33.47 44.10 67.05 23.34 - 3.83
52-shot 52 34.65 45.02 67.64 23.71 - 3.86
60-shot 60 39.88 49.80 68.22 23.09 - 3.85

CEDAR
Embedding 48 46.12 55.63 73.99 21.47 - 3.78
Frequency 41 51.72 60.55 75.57 32.97 - 4.22

For the baseline, we consider the search space to be random
when selecting demonstration samples to be used in the
prompt. To this end, we vary the number of samples by no
examples (zero-shot), one example (one-shot), N examples
selected randomly (random N -shot), and N examples based
on category (N -shot per category):

• Zero-shot: This prompt does not contain any code demon-
stration, CD; instead, the model is directly queried with
natural language instruction without any examples.

• One-shot: This prompt contains only one CD followed
by a query.

• N-shot - 1 example per category: This prompt contains N
random examples from each category for that represen-
tative task. The goal is to show the LLM with examples
from each category for that code generation task. For
assertion generation, there are 8 different assertion types
as described in III-A. We chose 1 example from each
assertion type, hence it is 8-shot for assertion generation.
For program repair, as there are 52 different error types,
we select 52-shot to include one instance from each error
category.

• N-shot: We select code demonstration examples, E , in two
ways to understand: (a) role of examples per category:
while for the previous strategy, we chose 1 example per
category, here we use N number of examples randomly
without the explicit consideration of category. As a result,
the number of examples for assertion generation and pro-
gram repair remains the same at 8 and 52, respectively;
(b) effect of including more examples: we provide more
examples to the LLM to understand their impact. We
chose 20 examples per prompt for assertion generation
that fit within the context window limit. For a given
developer query (xtest) for program repair, we select
random 60-examples from the same error category within
the context window. These are the maximum number of
code demonstrations used across all strategies.

D. Effectiveness of the Prompt (RQ1)

To study the effectiveness of a prompt, we experiment with
various input configurations. As discussed in Section II, we
build the prompt using extracted demonstrations from the
training set and query the model using data points from
the test set. We do this for each of the datasets and vary
both the demonstration selection strategy and template. The
demonstration template is varied by excluding or including
natural language instructions in the prompt. We experiment
with the two types of demonstration selection strategy –
random and retrieval based. We execute the random strategies
over the whole test dataset twice and report the averages.
First, we determine the best demonstration strategy needed for
prompt-based learning. After identifying the best-performing
demonstration strategy, we investigate the effect of natural
language instructions in the prompt.
Results. Tables I and II show the results for each of the code-
related tasks. We discuss the results for each task below.

Assertion Generation: In Table I, we observe that in the
zero-shot setting, the exact match accuracy (EM Acc.) is
0% and plausible match accuracy (PM Acc.) is 14.42%.
However, the inference time (1.33 seconds) and percentage
of assertion matched (29.16%) is the lowest for a zero-shot
setting. The average LCS is only 15.34% on average. In
the one-shot setting, the accuracy increased significantly to
44.41% for the exact match and 47.64% for the plausible
match. The inference time for generating the assertion also
increased to 3.64 seconds. The average edit distance for one-
shot increased (to 57.83) compared to the edit distance for the
zero-shot setting (36.62). The LCS (%) is 4.2 times higher
than the zero-shot setting i.e. the actual assertion order is
64.97% similar to the expected assertion order in the one-
shot setting. The percentage of assertion matched is 2.4 times
more than the zero-shot setting (70.24%). In the category-
specific 8-shot setting, the accuracy increased to 50.33%
(exact match) and 53.69% (plausible match), respectively. The
LCS (%) decreased to 62.65%, while the average edit distance
decreased to 17.94. The percentage of matched assertions
increased to 74.48%, and the inference time was 2.54 seconds,



TABLE II: Results for demonstration template in code-related tasks.

Task Template Examples EM Acc.(%) PM Acc.(%) LCS(%) ED. AMM.(%) Inf. time(s)

Assertion
Generation

w/o NL instructions 6 76.53 78.27 89.00 13.68 89.37 2.95
w/NL instructions 6 76.55 78.32 88.99 13.18 89.31 2.20

Program
Repair

w/o NL instructions 53 49.31 58.33 74.41 36.25 - 3.27
w/NL instructions 41 51.72 60.55 75.57 32.97 - 4.22

which is lower than the one-shot setting. We observe the
best performance in the random strategy from the 8-shot
setting, where the demonstrations have been selected from
the overall dataset. Here, the accuracy for the exact match
increased to 50.57% and 53.34% accuracy for the plausible
match. The LCS (%) also increased to 68.77%, which is also
higher than the one-shot setting. Additionally, the edit distance
is low, requiring only 19.10 edit operations on average, to
reach the expected assertion in cases where it does not match.
The average inference time is also lower than the 8-shot per
category setting. However, after adding more examples in
the random 20-shot setting, the exact match and plausible
match accuracy slightly decreased to 49.99% and 52.73%,
respectively. While the LCS (%) increased to 74.64%, the
average inference time (3.16 seconds), edit distance (20.53),
and assertion method matched (73.80%) declined slightly with
the inclusion of more examples.

The retrieval-based strategy of CEDAR yielded the best
results in assertion generation. In this strategy, the average
number of CDs for SROBERTA and BM-25 is 7 and 6, re-
spectively. The demonstration selection based on SROBERTA
embedding significantly improved the performance with an
exact match accuracy of 75.79% and plausible match accuracy
of 77.40%. The average LCS (%) increased to 88.50%, and
assertion matched (%) increased to 88.49% which is signifi-
cantly higher than the best-performing random demonstration
selection strategy. The inference time and edit distance is
also very low (1.78 seconds and 11.35 respectively). With the
frequency-based (BM-25) retrieval strategy, we observe an
improvement over the SROBERTA retrieval, with an accuracy
of 76.55% (exact match) and 78.32% (plausible match). The
LCS (%) and assertion method matched (%) also increased
to 88.99% and 89.31%, respectively. However, both the edit
distance (13.18) and inference time (2.20 seconds) are slightly
higher than SROBERTA retrieval strategy. This entails that
both retrieval-based techniques - SROBERTA and BM-25
provide competitive results in assertion generation task.

We also evaluated the effect of the demonstration template
by running the best performing strategy, BM-25 based re-
trieval without natural language instructions. In the assertion
generation task, the impact of natural language instruction is
negligible, as shown in Table II. The exact match (76.53%) and
plausible match (78.27%) accuracy without natural language
instructions is slightly lower compared to the template with NL
instructions. The average edit distance (13.68) and inference
time (2.95 seconds) is higher than the template containing
natural language instructions. However, we observe a slight

improvement in the percentage of assertion method matched
(89.37%) and average LCS percentage (89.00%).

Program Repair: Also, for program repair, we observe that
the retrieval-based demonstration selection outperforms ran-
domly selecting demonstrations. In random zero-shot learning,
the exact match accuracy is 27.33%, however, when consid-
ering the plausible match, the accuracy increases to 32.57%.
The inference time is 3.35 seconds which is higher than the
assertion generation task. This is because of generating multi-
line code fixes, as opposed to single-line assertions in the
previous task. The edit distance is the highest (98.30%), and
the LCS percentage is 68.02%. One-shot learning yielded a
slight improvement in both exact match accuracy (28.54%),
plausible match accuracy (37.57%), LCS percentage (67.93%),
and a lower edit distance of 87.13%. The inference time is
higher than the zero-shot setting by 0.60 seconds. In 52-
shot per category, the exact match accuracy increased even
further to 33.47% and plausible match accuracy increased
to 44.10%. However, the LCS percentage reduced slightly
to 67.05%. The average edit distance and inference time
decreased significantly to 23.64 and 3.83 seconds, respectively.
In the random 52-shot setting, the exact match, and plausible
match accuracy increased slightly to 34.65% and 45.02%. The
LCS % increased to 67.64% whereas the edit distance and
inference time remained similar to 52-shot per category. In the
60-shot setting, the performance improved moderately with
39.88% exact match and 49.80% plausible match. The LCS
percentage, edit distance, and inference time improved slightly
to 68.22%, 23.09, and 3.85 seconds, respectively.

In the retrieval-based strategy, SROBERTA retrieval yielded
46.12% in exact matches and 55.63% in plausible match
accuracy, which is significantly higher than the random strat-
egy. The LCS (%) increased to 73.99%, and the average edit
distance decreased to 21.47. The inference time was reduced
slightly to 3.78 seconds. With BM-25 retrieval, the accuracy
for both exact and plausible match increased even further to
51.72% and 60.55% respectively. The LCS (%) with 75.57%
is the highest among all other strategies. However, the average
edit distance and inference time increased to 32.97% and 4.22
seconds. For SROBERTA, the average number of CDs is 48,
and with BM-25, it is 41.

When varying the demonstration template in program repair,
we observe the best performance with natural language in-
structions as shown in Table II. Unlike the assertion generation
task, where we saw similar performance when varying the
template, this task yielded an improvement with the addition
of natural language instructions. The accuracy is lower for



TABLE III: Comparison with state-of-the-art in code-related tasks.

Task Approach Model type Exact Match Acc. (%)

Assertion
Generation

ATLAS Task-specific 17.66
Mastropaolo et al. [9] Fine-tuned 57.60
Mastropaolo et al. [10] Fine-tuned 68.93
CEDAR Few-shot learner 76.55

Program
Repair

HOPPITY Task-specific 7.90
COCONUT Task-specific 11.70
SEQUENCER Task-specific 17.90
TFIX Fine-tuned 49.30
CEDAR Few-shot learner 51.72

both exact (49.31%) and plausible matches (58.33%) in the
template without natural language instructions. The LCS (%) is
slightly lower (74.41%) and the average edit distance increases
to 36.25. However, the inference time of 3.27 seconds, is
lower compared to the template containing natural language
instructions. We use the results achieved with BM-25 retrieval,
using natural language instructions in the template as our
default approach in CEDAR, for both tasks going forward.

E. Comparison with State-of-the-Art (RQ2)

We compare CEDAR with state-of-the-art learning based-
models that have been trained on the same dataset (i.e.,
ATLAS AGraw and TFIX dataset) and evaluated in asser-
tion generation and program repair tasks. We use both task-
specific models ATLAS [8] for assertion generation and HOP-
PITY [43], SEQUENCER [44], COCONUT [45] for program
repair as well as the recent fine-tuned T5 models Mastropaolo
et al. [9], [10] (assertion generation) and TFIX [39] (program
repair). We show the best reported top-1 exact match accuracy
percentage of these approaches in Table III.

Assertion Generation: In Table III, the accuracy in top-1 for
the task-specific model, ATLAS, AGraw is 17.66%. ATLAS
uses sequence-to-sequence learning through a recurrent neural
network (RNN) encoder-decoder model to learn test assertion
statements within test methods. It uses the focal method and
test method as context for sequence-to-sequence learning to
generate a single assertion statement. Recently two other
approaches by Mastropaolo et al. [9], [10] outperformed the
NMT-based model of ATLAS by a significant margin (57.60%
and 68.93%, respectively). Both of these approaches use a
T5 transformer model that has been pre-trained on a large
database of source code and natural language text and then
fine-tuned in single-task and multi-task settings using datasets
for each code-related task. They used the same dataset from
ATLAS, AGraw and AGabs for evaluating their performance
in assertion generation. CEDAR outperforms both the fine-
tuned models and task-specific models by a large margin
(76.55%) without the need for pre-training or fine-tuning.

Program Repair: In this task, we use the results reported in
[39] for each of state-of-the-art task-specific and fine-tuned
models that have been trained and evaluated on the TFIX
dataset containing JavaScript ESLint errors. As shown in Ta-
ble III, HOPPITY had the lowest accuracy of 7.90%, followed
by 11.70% exact match accuracy in COCONUT. SEQUENCER

performed better than COCONUT with an accuracy of 17.90%.
TFIX significantly outperformed all four of these models by
fine-tuning a large T5 transformer model. TFIX had been fine-
tuned on 94K samples for the task of generating JavaScript
code fixes. Nevertheless, CEDAR outperforms all these models
with an (exact match) accuracy of 51.72% without requiring
any pre-training or fine-tuning step and on a much smaller
example set.

IV. DISCUSSION

A. Effect of Relevant Contextual Information

CEDAR employs prompt-based learning on code-related
tasks, to assist developers by suggesting assert statements or
bug fixes. Our results show that tuning the prompt effectively
is key to achieving high accuracy in specific downstream
tasks. In both assertion generation and program repair, we
observe that employing a random strategy to determine CDs,
can still outperform traditional task-specific deep learning-
based techniques (as shown in Section III-E (RQ2)). This
indicates the superiority of the usage of large pre-trained
language models in source code processing tasks. However,
our results for RQ1 in Section III-D show that the retrieval-
based selection of CDs significantly improves the accuracy
of predictions for both these code-related tasks, and is able
to outperform not only the task-specific models but also the
fine-tuned models e.g. TFIX and Mastropaolo et al. [9], [10].
We achieve this by using BM-25 as the ranking function to
select relevant examples from the demonstration pool. For
instance, in Figure 3 (program repair), the prompt template
contains relevant code demonstrations pertaining to the buggy
code, error type, warning line, and evidence. If these CDs
were chosen randomly, it would be difficult to ensure the
selection of similar and relevant demonstrations to reason
about a fix. Similarly, in Figure 2 (assertion generation), the
CDs were selected similar to the test method of the query,
xtest. Although the assertion type in the demonstration is not
syntactically similar (assertNull), the model is still able
to leverage the relevant unit test and focal methods in the
CD to generate the assertion. We also observe that using
natural language instructions improves the performance as
it helps the model in understanding the task at hand more
effectively (as shown in Table II). Furthermore, we note that
the inclusion of more demonstrations does not necessarily
improve the accuracy of predictions. In Table I, we see a



significant jump in the random strategy of assertion generation
when including one CD, however, after adding 8 CDs, the
performance only slightly improved and adding 20 examples
slightly deteriorated the performance. In the program repair
task, we observe a similar pattern, although with a slight
improvement in the 60-shot setting. However, by using the
retrieval-augmented strategy, having 6 and 41 examples on
an average for respective tasks still outperforms the best-
performing random strategy, which establishes quality over
quantity as a key factor. Therefore, contextual relevancy in
prompts plays a significant role in improving the effectiveness
of few-shot learning.

B. Qualitative analysis of code-related tasks

We randomly sampled the incorrect predictions made by
CEDAR to determine the quality of the output and the reason
for the incorrect matches. In the following subsections, we
qualitatively assess the results for each of the tasks along with
examples.

// stripping extra parenthesis
assertTrue(((list.size()) > 0)) // expected
assertTrue((list.size()) > 0) // generated

// matching args by ignoring order
assertEquals(reparsed, header) // expected
assertEquals(header, reparsed) // generated

// matching assertEquals(bool, ...) and assertTrue or
assertFalse

assertEquals(true, result) // expected
assertTrue(result) // generated

Listing 1: Example of plausible matches in assertion
generation.

Assertion Generation. CEDAR outperforms the task-specific
model ATLAS [8] by a significant margin (as shown in
Table III) as well as the fine-tuned T5 models [9], [10].
In our experiments, we introduced another metric called
plausible match to evaluate the similarity between the gen-
erated assertion by CEDAR and the expected assertion. This
means that we are able to capture cases, where the output
might have extra parenthesis, the order of assertion method
arguments are ignored, and when the expected assertion uses
assertTrue(...) assertFalse(...) while the generated
assertion uses assertEquals(Boolean, ...) (and vice
versa). We show examples of these exact cases in Listing 1.

assertTrue(max.equals(answer)) // expected
assertEquals (answer, max) // generated

assertEquals((-1), comparison) // expected
assertTrue(comparison < 0) // generated

assertTrue((fileSizeAfter < fileSizeBefore)) // expected
assertTrue((fileSizeBefore > fileSizeAfter)) // generated

Listing 2: Example of semantically correct matches in
assertion generation.

When sampling the incorrect exact or plausible match
predictions, we found that not all the assertions generated were
incorrect; many of the predictions were semantically correct,

or sometimes better (i.e., more explicit and readable) than the
expected assertions. Listing 2 shows some examples of these
semantically correct assertions that we manually evaluated
to be a match. These samples could not be detected with
our accuracy metrics. As a result, the reported accuracy is
a lower bound of the output generated by CEDAR. These
predictions could potentially be captured using semantic-based
code clone detection techniques. Currently, our evaluation
approach handles Type 1–3 (Textual) code clone variants,
therefore, incorporating a code clone detection technique that
handles Type 4 (Functional) [46] code clones could potentially
improve the results further.

// Buggy code (Unexpected ’this’.)
}).call(this);

}).call(this); // warning line

module.exports = OptionsExpression; // expected

server.listen(pathOrPort); // generated

Listing 3: Example of warning line completely replaced.

Program Repair. As shown in Table III, CEDAR outperformed
the state-of-the-art task-specific learning based models such
as COCONUT and SEQUENCER by a significant margin
(342.05% and 188.94% respectively) and the fine-tuned model
TFIX (4.91%) as well. This accuracy comparison is based on
the exact string match, however, TFIX used another metric
called Error removal to evaluate predictions. This metric is
similar to our plausible match accuracy, where we count the
prediction as correct if the warning line has been addressed by
removing/replacing the error with the fix. Additionally, in the
plausible match metric, we sanitize the output by removing
extra spaces or parenthesis (similar to the assertion generation
PM Accuracy) to match the expected output to the generated
output.

// Buggy code (Unused variable.)
feed,
remoteTrackers

}) => {

remoteTrackers // warning line

// expected
feed,
updateTorrentTrackers,
remoteTrackers

}) => {

// generated
feed,

}) => {

Listing 4: Example of mismatch between error context and
fix.

The dataset of TFIX [39] contained about 2-4 lines of
context including the warning line along with ESLint error
information. We randomly assessed a few incorrect predictions
by CEDAR in the program repair task and found that many
of the buggy code context contained incomplete or too little
contextual information to generate a fix. As a matter of
fact, many of the expected fixes were completely new lines,



which would have been impossible for a developer to generate
without seeing enough relevant context of the warning line.
Listing 3 and 4 show two samples demonstrating these cases.

In Listing 3, we notice that the expected fix is a completely
new line that replaces the warning line. Although the error
message provides an indication of the bug related to the warn-
ing line, the fix generated by the model and the expected fix
are unrelated to both the error message and the warning line.
In Listing 4, the predicted fix by CEDAR, which removes the
line, seems plausible because of the error message which states
that the warning line contains an unused variable. However, the
expected fix introduces a new variable instead of addressing
the warning line. Such an error is difficult to fix without
the presence of more contextual statements surrounding the
warning line.

C. Neural Coding Assistance Tool for Developers

CEDAR could be envisioned as a neural code assistance tool
or an IDE plugin to facilitate code-related tasks for developers.
A key feature of CEDAR is its generalizability and efficiency.
The overall processing time for a single code suggestion,
which includes the prompt building (200 milliseconds) and
inference (2.20 seconds for assertion generation and 4.22 for
program repair) is around 2.4 to 4.4 seconds, depending on the
task. CEDAR can also be used for multiple code-related tasks
and supports a variety of programming languages. Unlike the
task-specific models [2], [43]–[45], [47], which require large
training set and support only a single task, CEDAR requires
only a handful of systematically curated code demonstrations
to reason about a code query. Fine-tuned models have been
proposed in the literature to support multiple tasks without
creating a model from scratch. These models are essentially
LLMs which are tweaked to support multi-task learning using
transfer learning. However, it still requires a training step
with dataset tailored to the task, which can take a few hours
depending on the dataset complexity, model architecture, and
hyperparameters. Such models are yet to be fully incorporated
in a development setting due to its high setup cost. In contrast,
CEDAR provides better results within 2-4 seconds for each
query with minimal effort, which is an important factor to aid
developers in their tasks.

Task-specific or fine-tuned models are bound by the dataset
that they have been trained on. Certain languages, such as
JavaScript and Python, may contain syntactical or API changes
in the latest versions. This may lead to outdated syntax usage
or the exclusion of legacy API in the generated code. CEDAR
dynamically curates the code demonstrations for each query,
and as such, the demonstration pool could potentially be
collected from a dynamic source, as opposed to a static pool
of examples. As part of future work, we plan to augment our
demonstration pool to support relevant GitHub commits or
project-specific mining of CDs in real-time.

V. THREATS TO VALIDITY

Potential data leakage. CODEX is trained on open-source
code repositories, and it is possible that there is a data leakage,

i.e., the testing dataset was included in its training. The training
dataset used by CODEX is not publicly available. As such,
there is a potential threat that the model’s output is generated
due to memorization. However, we observe that (a) the model
does not perform well with zero-shot prompting, indicating
it has not memorized the test data, (b) for both the random
selection and CEDAR, we use the exact same model and test
dataset, showing that our retrieval-based prompt generation
is effective in eliciting better responses and improving the
performance of the LLM. We see a similar trend for both
tasks, assertion generation, and program repair.
Evaluation metrics. In this paper, we relied on evaluation
metrics such as exact match that is computed by strict string
equality matching. However, as observed in Section IV-B,
CEDAR could provide code suggestions that do not exactly
match with the developer written code, yet are functionally
equivalent. As a result, our comparison presents the lowest
bound of effectiveness from CEDAR. Nevertheless, exact ac-
curacy match is widely adopted as an evaluation metric by
other learning-based source code processing techniques [43]–
[45], [48].
Large language models on source code. In this study,
we evaluated the effectiveness of few-shot learning using
CODEX [18]. There are other large language models on
source code namely INCODER [49], CODET5 [50], among
others [16], [17], [51]–[57]. An empirical controlled study
such as REPTORY [42] addressing all the factors such as
model architecture, hyperparameters, and vocabulary size that
could affect the accuracy of code generation could certainly
be useful; however, such a study is not the goal of this paper.
In this work, we investigate whether few-shot learning could
be leveraged for two different source code processing tasks.
Generalization on different source code-related tasks.
CEDAR is applied to two source code-related tasks in this
study. The results indicate that CEDAR is effective in assertion
generation and fixing bugs and could be competitive with
task-specific models. Large language models such as CODEX
were not specifically trained for the task of assertion gener-
ation or learning to apply generic code repair. Despite this,
CEDAR yielded competitive results using few-shot learning.
This encouraging finding implies that few-shot learning could
be equally effective and competitive with other task-specific
learning-based models.
Reproducibility. We have made CEDAR’s implementation
publicly available [29]. We have also included instructions for
reproducing our experimental results.

VI. RELATED WORK

Foundation models in deep learning. Many researchers
have fined-tuned general-purpose pre-trained models to a
specific downstream task [58], [59]. Prominent examples
of pre-trained language models are ELMo [60], BERT [12],
RoBERTA [61], and T5 [13]. A more recent improvement is
the introduction of GPT-3, which is an autoregressive LLM
that is pre-trained to predict the next word in a sequence. These



large foundation models are found to be effective for prompt-
based learning [15] and can be generalized to a wide range
of tasks, such as text summarization, question answering, and
dialogue (e.g., ChatGPT8).
Applications of language models on source code. A num-
ber of pre-trained LLMs for code generation have been
proposed [16]–[18]. Recent studies examine the impact of
code completion with LLMs on software development [62],
[63], and developer productivity [19]–[21]. There is a growing
interest in determining whether generated code can intro-
duce security vulnerabilities [38], [64], reducing unauthorised
neural code learning [65], [66] from open-source code, and
how to use LLMs to repair vulnerabilities [67], [68]. Deep
reinforcement learning is used in CodeRL [69] to improve the
performance of LLMs. There have been efforts to exploit
feedback from generated tests [25], [26] and incorporate user
interaction [70] to enhance the code quality generated from
a language model. There are also applications of LLM
on program synthesis [71], [72]. Compared to these works,
CEDAR examines how LLMs could be employed in a few-
shot setting with retrieval-augmented techniques for different
tasks.

CODEX and PolyCoder have been used to patch pro-
grams [27], [28] in the Quixbugs [73] dataset, which is perhaps
the most similar existing work. However, they employed (a)
simpler problem settings instead of a more generic program
repair that represents real bugs, (b) focused on a single task,
and (c) did not provide means to create an effective prompt for
prompt-based learning. In this work, we focus on developing
a prompt with retrieval-based techniques that could elicit a
better response from the LLM.
Task-specific models on source code processing. There is a
large body of literature [74]–[78] that applies learning based
task-specific models to different source code processing tasks.
Different task-specific learning-based program repair tech-
niques [1]–[4], [6], [42]–[45], [79]–[82] have been proposed
that employ different neural architectures and a varied source
code representation. Similarly, task-specific neural models
have shown promise in generating test assertions [8], [83],
[84]. Unlike these task-specific models, CEDAR demonstrates
how LLM could be employed with careful demonstration
selection to achieve competitive results, without building and
training a neural network. CEDAR is not tied to a specific task
or programming language and could be generalized to multiple
tasks and multiple programming languages.
Pre-trained and fine-tuning based learning on source code.
Following the success of large pre-trained models and fine-
tuned models for many NLP tasks, these techniques are also
explored in the domain of source code [52], [57], [85],
[86]. Pre-trained models are explored on bug fixing [10],
[87]–[89], assertion generation [10], [90], code review [91]–
[93]. In contrast, we show that by leveraging retrieval-based
demonstration selection for few-show learning, CEDAR can
achieve competitive results with pre-trained models.

8https://chat.openai.com/chat

VII. CONCLUSION

The design of an effective prompt is pivotal for few-shot
learning. However, the steps to create an effective prompt are
sparsely explored for source code-related tasks. We present
CEDAR, the first work to apply an automated retrieval-
based demonstration selection strategy in code-related few-
shot learning. Our evaluation of CEDAR shows that it can
generate exact matches with 76% and 52% for test assertion
generation and program repair tasks, respectively. Our tech-
nique outperforms the best-performing state-of-the-art models
for assertion generation and program repair by up to 11% and
5%, respectively. As part of our future work, we plan to extend
CEDAR to more code-related tasks. In addition, we plan to
incorporate our approach as an IDE plugin to assist developers
with their software engineering tasks. ChatGPT, a recent large
language model for dialogue, has shown promise in various
code generation tasks. However, it is also known to produce
incorrect or nonsensical output, known as hallucinations. In
future work, we plan to investigate whether a retrieval-based
approach to select in-context examples can mitigate these
limitations.
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